A Formal Solution of Quadruple Series Equations
نویسندگان
چکیده
It cannot be overstated how significant Series Equations are to the fields of pure and applied mathematics respectively. The majority mathematical topics revolve around use series. Virtually, in every subject mathematics, series play an important role. solutions a major role solution mixed boundary value problems. Dual, triple, quadruple equations useful finding four part problems electrostatics, elasticity other Mathematical physics. Cooke devised method for involving Fourier-Bessel obtained using operator theory. Several workers have devoted considerable attention various instance, trigonometric series, Fourier Legendre Dini Jacobi Laguerre polynomials Bateman K-functions. Indeed, many these arise investigation certain classes potential There has been less work on functions. In light significance solutions, proposed examines that include product r generalised K Solution is formal, there no attempt made rationalise restricting processes encountered.
منابع مشابه
A series solution of fuzzy integral equations
In the present paper using homotopy analysis method (HAM), we approximate a special case of fuzzy integral equations. The fuzzy integral and integro-differential equations have a wide range of applications in science and engineering. In this paper HAM can be to find the exact solution or an approximate solution of the problem. Within this paper the HAM is used to obtain A series solution of int...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولDeveloping a Series Solution Method of q-Difference Equations
The series solution is widely applied to differential equations onR but is not found in q-differential equations. Applying the Taylor andmultiplication rule of two generalized polynomials, we develop a series solution of linear homogeneous q-difference equations. As an example, the series solution method is used to find a series solution of the second-order q-difference equation of Hermite’s type.
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Statistics
سال: 2023
ISSN: ['2332-2144', '2332-2071']
DOI: https://doi.org/10.13189/ms.2023.110116